Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion

نویسندگان

  • S. J. Solomon
  • T. Custer
  • G. Schade
  • A. P. Soares Dias
چکیده

A novel atmospheric methanol measurement technique, employing selective gas-phase catalytic conversion of methanol to formaldehyde followed by detection of the formaldehyde product, has been developed and tested. The effects of temperature, gas flow rate, gas composition, reactor-bed length, and reactor-bed composition on the methanol conversion efficiency of a molybdenum-rich, ironmolybdate catalyst [Mo-Fe-O] were studied. Best results were achieved using a 1:4 mixture (w/w) of the catalyst in quartz sand. Optimal methanol to formaldehyde conversion (>95% efficiency) occurred at a catalyst housing temperature of 345C and an estimated sample-air/catalyst contact time of <0.2 seconds. Potential interferences arising from conversion of methane and a number of common volatile organic compounds (VOC) to formaldehyde were found to be negligible under most atmospheric conditions and catalyst housing temperatures. Using the new technique, atmospheric measurements of methanol were made at the University of Bremen campus from 1 to 15 July 2004. Methanol mixing ratios ranged from 1 to 5 ppb with distinct maxima at night. Formaldehyde mixing ratios, obtained in conjunction with methanol by periodically bypassing the catalytic converter, ranged from 0.2 to 1.6 ppb with maxima during midday. These results suggest that selective, catalytic methanol to formaldehyde conversion, coupled with existing formaldehyde measurement instrumentation, is an inexpensive and effective means for monitoring atmospheric methanol. Correspondence to: S. J. Solomon ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic conversion of methanol to formaldehyde

Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion S. J. Solomon, T. Custer, G. Schade, A. P. Soares Dias, and J. Burrows Institute of Environmental Physics, University of Bremen, Bremen, Germany GRECAT-Grupo de Estudos de Catalise Heterogenea, Universidade Tecnica de Lisboa, Lisbon, Portugal presently with: Department of Atmospheric Sciences, Texas A...

متن کامل

On-Demand Generation of a Formaldehyde-in-Air Standard

The feasibility of using catalytic conversion of methanol to formaldehyde to produce standard amount of substance fractions of formaldehyde was examined. The conversion efficiencies of several catalysts were measured as a function of temperature, balance gas, catalyst bed length, and methanol amount of substance fraction in an effort to identify conditions which yield high and consistent conver...

متن کامل

Partial Oxidation of Methanol over Highly Dispersed Vanadia Supported on Silica SBA-15

The partial oxidation of methanol to formaldehyde was studied over highly dispersed vanadia supported on mesoporous silica SBA-15 (VOx/SBA-15). VOx/SBA-15 catalysts were prepared by a novel grafting/ion-exchange method and characterized using UV-VISand Raman spectroscopy. The resulting surface vanadium oxide species (0 – 2.3 V/nm), grafted on the inner pores of the SBA-15 silica matrix, consist...

متن کامل

CO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy

In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic properties of Pd-In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa.Room temperature deposition of ∼4 monolayer equivalents (MLEs) of In metal on Pd foil and subsequent annealing to 453 K in vacuum yields a ∼1:1 Pd/In near-surface multilayer intermetallic ...

متن کامل

The Influence of Hydrogen Treatment and Catalyst Morphology on the Interaction of Oxygen with a Silver Catalyst

The interaction of an unsupported silver catalyst which had been pretreated by hydrogen at various temperatures with oxygen at 210°C has been studied using Temperature Programmed Reduction (TPR) over a temperature range up to 900°C. Hydrogen treatment at 500°C or above before the oxidation step causes the formation of extra species, thought to be OH groups in the sub-surface of the sample. A pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005